Pseudo-conforming Polynomial Lagrange Finite Elements on Quadrilaterals and Hexahedra
نویسندگان
چکیده
The aim of this paper is to develop a new class of finite elements on quadrilaterals and hexahedra. The degrees of freedom are the values at the vertices and the approximation is polynomial on each element K. In general, with this kind of finite elements, the resolution of second order elliptic problems leads to non-conforming approximations.Degrees of freedom are the same than those of isoparametric finite elements. The convergence of the method is analyzed and the theory is confirmed by some numerical results. Note that in the particular case when the finite elements are parallelotopes, the method is conforming and coincides with the classical finite elements on structured meshes.
منابع مشابه
Pseudo-conforming Hdiv polynomial finite elements on quadrilaterals and hexahedra
The aim of this paper is to present a new class of mixed finite elements on quadrilaterals and hexahedra where the approximation is polynomial on each element K. The degrees of freedom are the same as those of classical mixed finite elements. However, in general, with this kind of finite elements, the resolution of second order elliptic problems leads to non conforming approximations. In the pa...
متن کاملPseudo-conforming polynomial finite elements on quadrilaterals
The aim of this paper is to present a new class of finite elements on quadrilaterals where the approximation is polynomial on each element K. In the case of Lagrange finite elements, the degrees of freedom are the values at the vertices and in the case of mixed finite elements the degrees of freedom are the mean values of the fluxes on each side. The degres of freedom are the same as those of c...
متن کاملInf-sup Stable Nonconforming Finite Elements of Higher Order on Quadrilaterals and Hexahedra
Abstract. We present families of scalar nonconforming finite elements of arbitrary order r ≥ 1 with optimal approximation properties on quadrilaterals and hexahedra. Their vector-valued versions together with a discontinuous pressure approximation of order r − 1 form inf-sup stable finite element pairs of order r for the Stokes problem. The well-known elements by Rannacher and Turek are recover...
متن کاملLow-order continuous finite element spaces on hybrid non-conforming hexahedral-tetrahedral meshes
This article deals with solving partial differential equations with the finite element method on hybrid non-conforming hexahedral-tetrahedral meshes. By non-conforming, we mean that a quadrangular face of a hexahedron can be connected to two triangular faces of tetrahedra. We introduce a set of low-order continuous (C) finite element spaces defined on these meshes. They are built from standard ...
متن کاملCONSTRUCTION OF H(div)-CONFORMING MIXED FINITE ELEMENTS ON CUBOIDAL HEXAHEDRA∗
We generalize the two dimensional mixed finite elements of Arbogast and Correa [T. Arbogast and M. R. Correa, SIAM J. Numer. Anal., 54 (2016), pp. 3332–3356] defined on quadrilaterals to three dimensional cuboidal hexahedra. The construction is similar in that polynomials are used directly on the element and supplemented with functions defined on a reference element and mapped to the hexahedron...
متن کامل